Evaluation of several Maximum Likelihood Linear Regression Variants for Language Adaptation
نویسندگان
چکیده
Multilingual Automatic Speech Recognition (ASR) systems are of great interest in multilingual environments. We studied the case of the Comunitat Valenciana where the two official languages are Spanish and Valencian. These two languages share most of their phonemes, and their syntax and vocabulary are also quite similar since they have influenced each other for many years. We constructed a system, and trained its acoustic models with a small corpus of Spanish and Valencian, which has produced poor results due to the lack of data. Adaptation techniques can be used to adapt acoustic models that are trained with a large corpus of a language inr order to obtain acoustic models for a phonetically similar language. This process is known as language adaptation. The Maximum Likelihood Linear Regression (MLLR) technique has commonly been used in speaker adaptation; however we have used MLLR in language adaptation. We compared several MLLR variants (mean square, diagonal matrix and full matrix) for language adaptation in order to choose the best alternative for our system.
منابع مشابه
Discounted likelihood linear regression for rapid speaker adaptation
The widely used maximum likelihood linear regression speaker adaptation procedure suffers from overtraining when used for rapid adaptation tasks in which the amount of adaptation data is severely limited. This is a well known difficulty associated with the expectation maximization algorithm. We use an information geometric analysis of the expectation maximization algorithm as an alternating min...
متن کاملPerformance evaluation of style adaptation for hidden semi-Markov model based speech synthesis
This paper describes a style adaptation technique using hidden semi-Markov model (HSMM) based maximum likelihood linear regression (MLLR). The HSMM-based MLLR technique can estimate regression matrices for affine transform of mean vectors of output and state duration distributions which maximize likelihood of adaptation data using EM algorithm. In this study, we apply this adaptation technique ...
متن کاملThe Speaker Adaptation of an Acoustic Model
This paper deals with several adaptation techniques, which are of the importance in cases when the identity of a speaker is known and we want to recognize his speech. We are using three different methods, namely Maximum Apriori Probability adaptation, Maximum Likelihood Linear Regression and Constrained Maximum Likelihood Linear Regression. Each of the methods yields various benefits, therefore...
متن کاملMaximum Likelihood Linear Regression (MLLR) for ASR Severity Based Adaptation to Help Dysarthric Speakers
Automatic speech recognition (ASR) for dysarthric speakers is one of the most challenging research areas. The lack of corpus for dysarthric speakers makes it even more difficult. The speaker adaptation (SA) is an alternative solution to overcome the lack of dysarthric speech and enhance the performance of ASR. This paper introduces the Severity-based adaptation, using small amount of speech dat...
متن کاملImprovement of MLLR Speaker Adaptation Using a Novel Method
This paper presents a technical speaker adaptation method called WMLLR, which is based on maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform which adapted the HMM mean vectors was calculated to maximize the likelihood of adaptation data. In this paper, the prior knowledge of the initial model is adequately incorporated into the adaptation. A series of spea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008